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Preliminary design of low-thrust interplanetary missions is a highly complex process. The
mission designer must choose discrete parameters such as the number of flybys, the bodies at which
those flybys are performed, and in some cases the final destination. In addition, a time-history of
control variables must be chosen that defines the trajectory. There are often many thousands, if
not millions, of possible trajectories to be evaluated, which can be a very expensive process in
terms of the number of human analyst hours required. An automated approach is therefore very
desirable. This work presents such an approach by posing the mission design problem as a hybrid
optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the
main asteroid belt, and Pluto.

Nomenclature
F constraint vector

u control vector

v∞ hyperbolic excess velocity vector (km/s)

x decision vector

∆Fmax largest violation in F

δ flyby turn angle (◦)

δpower power margin

ṁ mass flow rate (kg/s)

η thruster efficiency

[γi] solar array performance coefficients

[aF ...eF ] mass flow coefficients
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[aLV ...eLV ] launch vehicle performance coefficients[
as/c...cs/c

]
spacecraft bus power coefficients

[aT ...eT ] thrust coefficients

µ gravitational constant of a body (km3/s2)

µGA GA mutation frequency

Ω right ascension of ascending node (◦)

ω arguement of periapse (◦)

ρ metric of infeasibility

σLV launch vehicle margin

τ decay rate of the power supply

P̃ pseudo-period (s)

a semi-major axis (AU)

C3 hyperbolic excess energy (km2/s2)

CRGA GA crossover frequency

D duty cycle

e eccentricity

g0 gravity on Earth at sea level (m/s2)

i inclination (◦)

Isp specific impulse (s)

M mean anomaly (◦)

m spacecraft mass (kg)

N number of time-steps

navailable number of available thrusters

Nelite number of elite unique individuals to hold between GA generations

Ngen number of generations to run the GA
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Nparents number of parents in the GA parent pool

Nstall−gen number of generations after which the GA stops if no improvement occurs

P power available to the propulsion system (kW )

P0−BOL power delivered by the power supply at 1 AU on the day of launch (kW )

Pgenerated power generated by the power supply (kW )

Pmax maximum power for a thruster (kW )

Pmin minimum power for a thruster (kW )

Ps/c power required by the spacecraft bus (kW )

r distance from a body (km)

ra apoapse distance (km)

smb backward-propagated state vector at a match-point

smf forward-propagated state vector at a match-point

T thrust (N )

t0 initial time (s)

tf final time (s)

GA genetic algorithm

HOC hybrid optimal control

HOCP hybrid optimal control problem

MBH monotonic basin hopping

SNOPT Sparse Nonlinear Optimizer
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I. Introduction
Preliminary design of low-thrust interplanetary missions is a complex, challenging problem

which is often very expensive in terms of both human-hours and computer-hours. In any interplan-
etary mission design, the designer must select the appropriate launch date, flight time, maneuvers,
and in some cases a sequence of planetary flybys. In some cases, such as small body missions,
the trajectory designer is also tasked with choosing appropriate science targets that satisfy both
scientific need and spacecraft capability. In the case of low-thrust missions, the designer must also
choose a time history of control variables, such as thrust magnitude and direction. Both the discrete
sequence-choosing problem and the continuous trajectory optimization problem are challenging
and computationally expensive, and so an efficient, automated technique is highly desirable.

The traditional method of preliminary design is to approximate the low-thrust trajectory with
a low-fidelity method such as a ballistic arc [1] or a shape-based approximation [2, 3, 4] and then
to create a low-fidelity multiple-flyby trajectory by linking together many such arcs. A grid search
tool [1] or a graphical tool combined with the designer’s intuition [5] are then used to find the best
low-fidelity solution. This solution is in turn used as an initial guess for a gradient-based low-
thrust optimizer. Several such tools exist, including Mission Analysis Low-Thrust Optimization
(MALTO) [6] and Gravity Assisted Low-thrust Local Optimization Program (GALLOP) [7]. This
approach suffers from two significant drawbacks. First, the gradient-based optimizers converge
to the locally optimal solution in the neighborhood of the initial guess and there is no guarantee
that the best ballistic trajectory is in the neighborhood of the best low-thrust trajectory. In fact, the
optimal flyby sequence or even the optimal target selection for a small body mission may not be the
same between the best impulsive and low-thrust solutions. Second, it is computationally expensive
to evaluate every possible ballistic solution in a grid and expensive in terms of human analyst
time to try every promising candidate in a low-thrust solver and since there are frequently multiple
locally optimal solutions it is not immediately obvious which possible solution the analyst should
focus on. An automated method that intelligently explores the design space is highly desirable.
Such a method should be capable of finding solutions (a) with less cost, in terms of human analyst
time, (b) that may not be easily findable with a grid search or intuitive approach, and (c) without
taking longer, in terms of total elapsed time, than other methods.

One such automated approach is to formulate the interplanetary design problem as a hybrid op-
timal control problem (HOCP). An HOCP is an optimization problem that is composed of two sep-
arable sub-problems, one with discrete variables and the other with continuous variables [8, 9]. For
interplanetary design, the first problem is to choose the discrete parameters that define the mission,
such as number of flybys, choice of flyby bodies, and, for some types of missions, the destination.
The second problem is to find the parameters, such as launch date, flight times, flyby altitudes,
encounter velocity vectors, and thrust program that characterize the optimal trajectory for each set
of discrete parameters. An HOCP can be solved using two nested optimization loops. The “outer-
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loop” solves the integer programming problem defining the discrete parameters. Each candidate
solution to the “outer-loop” problem defines an “inner-loop” trajectory optimization problem. This
approach was demonstrated first by Chilan, Wall, and Conway [10] for trajectories without flybys
and then by Englander, Conway, and Williams for trajectories that include flybys and impulsive
chemical propulsion [11].

Other researchers have addressed components of the outer-loop problem. Gad and Abdelkhalik
[12, 13] solve the multiple-flyby problem with impulsive, chemical thrust by using a single genetic
algorithm (GA) optimization loop. Another method, by Vasile and Campagnola [14], uses a set of
successive deterministic algorithms to find candidate low-thrust, multiple flyby trajectories.

In this work we present a new framework for optimization of low-thrust interplanetary trajecto-
ries where the flyby sequence, and sometimes the destinations themselves, are not known a priori.
The mission design problem is formulated as an HOCP where the outer-loop chooses the number
of flybys, the identity of the flyby bodies, and, when appropriate, the destination. The outer-loop
is based on the “null-gene” transcription presented by Englander, Conway, and Williams [11] and
a discrete GA. The inner-loop is based on the Sims-Flanagan transcription [15] combined with
the monotonic basin hopping (MBH) global search algorithm [16, 17, 18, 19]. The method is
demonstrated on a hypothetical missions to Mercury, the main asteroid belt, and Pluto.

The algorithms described in this work are available as part of the open-source Evolutionary
Mission Trajectory Generator (EMTG) project [20]. The authors encourage the reader to examine
and use them and also welcome opportunities for collaboration.

II. Physical Modeling
A. Mission Architecture

Three trajectory components or trajectory divisions are defined in this work: missions, journeys,
and phases. A mission is a top-level container that encompasses all of the events including de-
partures, arrivals, thrust arcs, coast arcs, and flybys. A journey is a set of events within a mission
that begin and end at a target of interest. The boundary conditions can be a powered or unpowered
gravity assist, a planetary encounter, a small body intercept or rendezvous, or simply a state vector.
For example, the interplanetary cruise portion of the Cassini mission was composed of a single
journey that began at Earth and ended at Saturn. JAXA’s Hayabusa mission, which rendezvoused
and took samples from near Earth asteroid Itokawa, had two journeys - one from Earth to Itokawa,
and one from Itokawa to Earth. NASA’s Dawn mission is also composed of two journeys, one from
Earth to Vesta and one from Vesta to Ceres. Each journey is composed of one or more phases. Like
a journey, a phase begins at a planet and ends at a planet, but unlike the end points of a journey, the
end points of a phase may represent a flyby of a body that is being used only to modify the trajec-
tory of the spacecraft, i.e. a propulsive flyby. For example, the first journey of the Dawn mission
may be considered to be a two-phase journey because it included a flyby of Mars. The number of
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journeys in a mission is fixed a priori but the number of phases is not, and in the context of this
work both the number of phases and the identity of the flyby planets in each phase may be chosen
by the optimizer. Figure 1 is a block diagram of a mission using the journey/phase nomenclature.

Figure 1. Anatomy of a Mission

B. Modeling of Dynamics

The dynamics of the spacecraft motion are modeled using the Sims-Flanagan transcription (SFT),
a widely used method in which the continuous-thrust trajectory is discretized into many small time
steps, and the thrust applied during each time step is approximated as a small impulse placed at the
center of the time step. The trajectory is propagated between control points by solving Kepler’s
problem [15]. The SFT, when used with a nonlinear programming (NLP) problem solver such as
the Sparse Nonlinear Optimizer (SNOPT)[21] and a suitable initial guess, is very fast and robust.
It is considered to be a “medium-fidelity” transcription and is used in software packages such as
MALTO [6], GALLOP [7], and Parallel Global Multiobjective Optimizer (PaGMO) [22].

In the classical SFT, the optimizer chooses the three components of an impulsive ∆v vector
at the center of each time-step. In order to improve the robustness of the solver, a modified tran-
scription known as “up-to-unit vector control” [23] is used in this work, where instead of choosing
the ∆v vector directly the optimizer instead chooses a control 3-vector in [−1.0, 1.0] that is multi-
plied by the maximum ∆v that the spacecraft can produce in that time-step. The magnitude of the
control vector is bounded in the range [0.0, 1.0], i.e.,

∆vi = ui∆vmax,i, ‖ui‖ ≤ 1.0 (1)

where

∆vmax,i =
DnavailableT (tf − t0)

mN
(2)

whereD is the thruster duty cycle, navailable is the number of available thrusters, T is the maximum
available thrust from one thruster, t0 and tf are the beginning and ending times of the time step, m
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is the mass of the spacecraft at the center of the time step, and N is the number of time steps in the
phase. This modified SFT is used in MALTO, PaGMO, and in this work.

The spacecraft state is propagated forward from the first endpoint (i.e. planet) in each phase
and backward from the second endpoint. The trajectory is propagated by solving Kepler’s equation
and the spacecraft mass is propagated by assuming a constant mass flow rate across the each time-
step. The specific Kepler propagator algorithm used here is a Laguerre-Conway method [24]. A
set of nonlinear constraints are applied to ensure continuity in the center of the phase,

smf − smb =
[

∆x ∆y ∆z ∆vx ∆vy ∆vz ∆m
]

= 0 (3)

where ∆x, ∆y, and ∆z are the position constraint defects, ∆vx, ∆vy, and ∆vz are the velocity
constraint defects, and ∆m is the mass constraint defect.

The optimizer also chooses the initial and final velocity vectors for each phase. If a phase
begins with a launch, the magnitude of the initial velocity vector is used with a launch vehicle
model to determine the initial mass of the spacecraft as described later in this work. If a phase
begins with a planetary flyby, two nonlinear constraints are applied to ensure that the flyby is
feasible. First, the magnitudes of the incoming and outgoing velocity vectors with respect to the
planet must be equal,

v+∞ − v−∞ = 0 (4)

where v−∞ and v+∞ are the magnitudes of the velocities before and after the flyby, respectively.
Second, the spacecraft may not fly closer to the planet than some user-specified minimum flyby
distance:

µplanet
v2∞

[
1

sin( δ
2
)
− 1

]
− (rplanet + hsafe) ≥ 0 (5)

where
δ = arccos

[
v−∞ · v+

∞
|v−∞| |v+∞|

]
(6)

Here µplanet is the gravitational parameter of the planet, rplanet is the radius of the planet, δ is the
flyby turn angle, and hsafe is the user-defined minimum altitude.

Figure 2 is a diagram of a simple low-thrust mission to Jupiter with one Earth flyby using
the multiple gravity assist with low-thrust (MGALT) model. Here the Earth flyby occurs approx-
imately one year after launch. The continuity constraints are deliberately left unsatisfied in the
diagram to illustrate where they must be applied.

There are four significant advantages to using the SFT. First, the optimal objective function
value for a Sims-Flanagan trajectory design is usually very close to the optimal cost value for
a higher-fidelity version of the same trajectory. Second, a low-thrust trajectory generated using
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Figure 2. Schematic of a two-phase trajectory using the SFT

the SFT makes a very good initial guess for a higher-fidelity trajectory design. Third, the SFT
is very fast because it does not require numerical integration of differential equations. Fourth,
the convergence of an NLP solver solving a Sims-Flanagan problem is very robust to poor initial
guesses, making it ideal for an automated design approach. It is notable that the more time-steps
used, the more accurate the SFT is. Higher numbers of time-steps yield more realistic solutions
but at a high computational cost as the size of the Jacobian increases as the square of the number
of time-steps. It is desirable to have at least 10 time-steps per revolution about the central body.
Commonly the authors start with 20 time-steps per phase and then increase from there until there
are at least 10 time-steps per revolution in the final answer.

The formulation described here may be generalized to any choice of central body. While the
examples in this work are all heliocentric missions, the model and the associated software can
work about any body in the solar system or even a fictitious body. However, the Sims-Flanagan
transcription, and all two-point direct shooting transcriptions, has a significant drawback. While
it is very appropriate for trajectories in which the number of revolutions about the central body is
small (less than ten) and the orbit changes significantly in each revolution, it is not appropriate for
trajectories with many (tens to thousands) of revolutions about the central body and a very small
change in orbit in each revolution. This property is a consequence of direct parametrization of the
control - as the number of revolutions increases a two-point direct shooting transcription suffers
from both the curse of sensitivity an the curse of dimensionality. However this drawback is not
important for most interplanetary trajectories and does not affect the problems solved in this work.
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C. Launch Vehicle, Propulsion, Power, and Ephemeris Modeling

Low-thrust trajectories are inextricably coupled to the specific hardware used by the spacecraft.
The optimal trajectory for one combination of launch vehicle, propulsion system, and power sys-
tem will not be the optimal trajectory for a different hardware combination. Realistic modeling of
these three systems and of system margins is therefore applied in this work. In addition, accurate
ephemeris modeling is provided by the SPICE toolkit [25]. SPICE! (SPICE!) is very accurate but
does have some properties which add challenge to the trajectory optimization process. Most im-
portantly the ephemerides provided by SPICE are not continuously differentiable. An alternative
may be to use a spline approximation to SPICE! as described by Arora and Russell [26]. This
would make the inner-loop solver more robust.

Launch vehicle performance, measured as delivered mass in kg as a function of C3 in km2/s2,
is modeled as a 5th degree polynomial:

mdelivered = (1− σLV )
(
aLVC

5
3 + bLVC

4
3 + cLVC

3
3 + dLVC

2
3 + eLVC3 + fLV

)
(7)

where σLV is the user-defined launch vehicle margin in [0, 1] and the other coefficients are chosen
by a curve fit to published launch vehicle performance data available at the Kennedy Space Center
(KSC) expendable launch vehicle (ELV) performance website [27]. Several types of electric
thrusters are modeled in this work. The simplest method is to set constant values for thrust and
specific impulse (Isp). However, because both thrust and Isp are functions of available power,
which is itself a function of distance from the sun, constant values are not accurate in most cases.
They are, however, appropriate when it is known a priori that the spacecraft’s entire mission will
take place in a regime where the propulsion system may be fully powered. This assumption is
reasonable for a mission to the inner planets, Venus and Mercury. When the constant thrust and
Isp model is used, mass flow rate ṁ is computed by:

ṁ =
T

Ispg0
(8)

where g0 is the acceleration due to gravity on Earth at sea level, 9.806650 m/s2.
The second method of thruster modeling is to provide performance polynomials for T and ṁ

as a function of available power in kW of the form:

T = aTP
4 + bTP

3 + cTP
2 + dTP + eT (9)

ṁ = aFP
4 + bFP

3 + cFP
2 + dFP + eF (10)

The coefficients {aT , bT , cT , dT , eT , aF , bF , cF , dF , eF} are drawn from the published literature and
are curve fits to laboratory test data. Each thruster also has an associated minimum power Pmin
and maximum power Pmax. If the available power P is less than Pmin, then T and ṁ are zero. If
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P is greater than Pmax then the performance polynomials are evaluated at Pmax. When thruster
performance polynomials are used, one must also determine the number of thrusters that can fire
simultaneously, nactive, which is less than or equal to the user-defined number of available thrusters,
navailable. In this work, nactive is calculated via one of two algorithms. In the first algorithm,
“maximum number of thrusters,” the spacecraft must fire as many thrusters as possible with the
currently available power, even if doing so requires throttling the thrusters to a lower power level.
In the second algorithm, “minimum number of thrusters,” the spacecraft must fire as few thrusters
as possible to fully use the available power and therefore at a higher power level per thruster
than in “maximum number of thrusters.” The most appropriate throttle logic for a given mission
depends on whether the thruster being used is most efficient at its highest power level, in which
case “minimum number of thrusters” is most appropriate, or if it is most efficient at intermediate
power levels in which case “maximum number of thrusters” is more effective.

The third thruster model in this work computes available thrust T as a function of available
power, fixed propulsion system efficiency η and Isp,

T =
2ηP

Ispg0
(11)

where Isp may be user-defined, chosen by the optimizer and fixed over the length of the mission,
or chosen by the optimizer at each time-step to simulate a variable Isp (VSI) propulsion system.

The available power P is the difference between the power generated by the spacecraft Pgenerated
and the power required to operate the spacecraft bus Ps/c,

P = (1− δpower)
(
Pgenerated − Ps/c

)
(12)

where δpower is a user-defined power margin.
In this work, the power delivered by a solar array is given by [28]:

Pgenerated =
P0

r2

(
γ0 + γ1/r + γ2/r

2

1 + γ3r + γ4r2

)
(13)

where the γi are user-defined solar panel coefficients, r is the distance between the sun and the
spacecraft in Astronomical Unit (AU) and P0 is the “base power” delivered by the array at 1 AU.
P0 is in turn a function of the time since launch,

P0 = P0−BOL (1− τ)t (14)

where P0−BOL is the base power delivered by the array at 1 AU on the day of launch, τ is the decay
rate of the solar arrays measured as a percentage per year, and t is the time since launch in years.
Equation (14) may also be used to model the decay of an radioisotope thermal generator (RTG) or
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advanced Stirling radiosotope generator (ASRG) power system.
The power required by the spacecraft bus Ps/c is modeled as a polynomial,

Ps/c = as/c +
bs/c
r

+
cs/c
r2

(15)

where as/c, bs/c, and cs/c are chosen by the user.

D. Lower and Upper Bounds

The stochastic optimizers used in this work require that the mission design problem be posed in a
bounding box. If the bounds on the decision variables are too broad, the solvers will struggle to
find a good solution. If the bounds are too constraining than there is a risk of pruning away the
optimal solution. Furthermore, because the trajectory design problem is being solved as the inner-
loop of a HOCP, there is no opportunity for a human analyst to set appropriate bounds for every
possible problem. Some types of bounds, such as on launch C3, stay time at intermediate science
targets, and maximum flyby velocities may be chosen by an analyst and applied to the entire set
of sub-problems generated by the outer-loop. However it is helpful to use a set of automated
bounds-choosing laws to choose the flight time for each phase.

In this work, the flight time for each phase is driven by the “pseudo-period,” or P̃ , of the
boundary bodies,

P̃ = 2π

√
r3a
µ

(16)

where ra is the apoapse distance of the body. The apoapse distance is used to construct a
pseudo-period instead of using the semi-major axis to construct the true period because low-thrust
flight times to bodies on highly eccentric orbits often cannot be predicted just by looking at the
orbital period of the body. Rather, the time necessary to travel to the outer solar system is relevant.
The pseudo-period concept introduced here has proven useful in several mission design cases. P̃
is linked to the definition of a length unit (LU) which is chosen a priori by the user. In this work
1 LU is equal to 1 AU. The flight times for various types of phases are derived from the P̃ for the
boundary bodies and are shown in Table 1.

Table 1. Automated choice of phase flight-time bounds

Case Lower Bound Upper Bound

repeated flyby of same planet P̃ /2 20P̃

outermost body has a < 2LU 0.1min
(
P̃1, P̃2

)
2.0max

(
P̃1, P̃2

)
outermost body has a ≥ 2LU 0.1min

(
P̃1, P̃2

)
max

(
P̃1, P̃2

)
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III. Outer-Loop Optimization of the Mission Sequence
A. Outer-Loop Transcription

The mission design problem in this work is posed as two nested optimization problems, an “outer-
loop” discrete optimization problem and an “inner-loop” real-valued optimization problem. The
outer-loop solves a multi-objective integer programming problem whose candidate solutions are
themselves instances of the inner-loop trajectory optimization problem. Each candidate solution is
then evaluated for its fitness by running the inner-loop solver, and then the resulting population of
solutions may be compared and a new population created.

In this work, the outer-loop solver is used to choose two mission characteristics: the desti-
nation(s) for each journey and/or the number of flybys and identity of the flyby targets. If the
outer-loop is being used to select journeys, the user specifies a priori a menu of candidate destina-
tions for each journey. The outer-loop picks one choice from each menu and uses them to define a
trajectory optimization problem that is then passed to the inner-loop.

Flyby sequence selection is similar to journey destination selection except that one does not
always know how many flybys are to be performed. A “null-gene” technique is used to choose the
number and identity of flyby bodies [11]. The analyst provides a list of acceptable flyby bodies and
a maximum number of flybys for each journey. Then, for each potential flyby, the outer-loop may
select from a list containing the specified acceptable bodies and also a number of “null” options
equal to the number of acceptable bodies. The outer-loop therefore has an equal probability of
selecting “no flyby” for each opportunity as it does to select a flyby. This technique has been
shown to be very effective for designing multi-flyby interplanetary missions and has been used to
reproduce the Cassini [11] trajectory.

B. Outer-Loop Optimization via GA

The outer-loop problem is an integer programming problem that lends itself well to solution by a
GA. First proposed by Holland[29], the GA is a population-based search heuristic that mimics the
evolution of a species.

The GA has been shown to be effective as an outer-loop solver for hybrid optimal control
problem spacecraft trajectory optimization [10, 30], possibly because the choice of a sequence of
discrete events in the trajectory is analogous to the choice of a sequence of genes in the biological
systems that the GA is designed to mimic. The GA was previously applied by these authors to the
HOCP of chemical propulsion trajectory design [11].

The GA first generates a random population P of decision vectors, or chromosomes, in an Np-
dimensional vector space. The algorithm is run for a number of generations. At each generation,
the fitness of every individual in the population is evaluated. A selection operator is employed
to choose the best Nparents individuals who will become the parents of the next generation. A
crossover operator is then used to create child vectors from the chosen parent vectors, replacing
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a user-specified fraction of the population. This fraction is called the crossover ratio, or CRGA.
Then, with some small probability µGA, random mutation occurs in the resulting new population.
Unfortunately this can sometimes result in the GA discarding the optimal solution after it is found.
It is therefore desirable to preserve a small number Nelite individuals, termed elite, without mod-
ification in each generation. The process is then repeated either for a set number of generations
Ngen or until some user-specified convergence criterion is met, such as the GA “stalling,” that is,
failing to improve the best known solution for Nstall−gen generations. The basic GA is listed in the
appendix.

An integer-encoded GA is used in this work. The selection operator is “tournament selection,”
where a “pool” of parents is selected from the population. The parent pool is then sorted and the
best member of the pool is chosen to serve as a parent. This process is repeated every time a
parent is required (twice per crossover operation). The well-known binary crossover and uniform
mutation operators are used[29].

The elitism operator used in this work is not the classical elitism operator in which the best
Nelite individuals are retained. Instead, the best Nelite unique individuals are retained. The elitism
operator preserves the best members of the population and encourages diversity at the same time.

C. Parallel Outer-Loop Optimization

The evaluation of the objective functions for a candidate solution is very expensive - it requires
solving the entire inner-loop trajectory optimization problem and can take at best several seconds,
in most cases many minutes, and in some cases hours. Fortunately each inner-loop subproblem
is independent of the others so it is natural to evaluate them in parallel. The pool of N inner-loop
subproblems to be evaluated is distributed over P processor cores. If N exceeds P, the subproblems
are agglomerated into P task pools with one assigned to each processor. The run-time is further
decreased by saving each candidate solution to the outer-loop problem so that none need be eval-
uated more than once. Therefore the number of inner-loop instances to be run for each outer-loop
generation tends to decrease and the algorithm speeds up with each generation of the GA.

There are two parallel processing paradigms: shared memory multiprocessing and distributed
memory multicomputing. Shared memory multiprocessing, also known as threading, is easier to
implement but is not appropriate for this work because it requires all processes to be “thread-
safe,” i.e. not interfere with each other even while operating in the same memory space. However
the SPICE ephemeris reader used in this work is not thread-safe and therefore the authors never
pursued shared-memory multiprocessing. Instead the algorithm described in this work is imple-
mented using the distributed memory multicomputing library message passing interface (MPI) [31]
in which each processor runs an independent process in distinct memory spaces. If in the future an
alternative ephemeris reader such as Arora and Russell’s FIRE [26] were used in place of SPICE,
shared-memory multiprocessing may become feasible.
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IV. Inner-Loop Trajectory Optimization
A. Stochastic Global Search via Monotonic Basin Hopping and SNOPT

Like most other optimization problems, low-thrust trajectory design problems require an initial
guess. Such initial guesses are often generated using Lambert’s method, by solving for the optimal
impulsive trajectory, by using shape-based trajectory approximations [2, 3, 4], or by experience-
driven intuition. Once an initial guess is found for one version of the problem, the solution to the
first problem may be used as an initial guess for related problems. However there are drawbacks in
this approach. First, the optimal low-thrust solution may not be in the neighborhood of the optimal
solution to the low-fidelity Lambert version of the same problem. Second, sometimes the solution
space bifurcates - that is, there may be multiple locally optimal solutions and it is difficult to know
a priori which solution family is the best. This complexity can cause a human analyst to spend a
great deal of time trying initial guesses that do not lead to the globally optimal trajectory. Finally,
and most importantly, the inner-loop solver in an HOCP solver must be able to autonomously solve
any trajectory optimization problem posed by the outer-loop GA. Since there is no room for human
intervention, there is also no room for a human to provide an initial guess. Therefore an automated
solution method is required.

Recent research in low-thrust trajectory optimization has led to the creation of stochastic search
methods that do not require an initial guess [32, 33, 34, 28, 17, 11, 35, 18, 36, 37, 38, 19]. These
methods are naturally suited for use in an HOCP framework. The stochastic search method used
in this work is monotonic basin hopping (MBH) [39]. MBH is an algorithm for finding globally
optimal solutions to problems with many local optima. MBH works on the principle that many
real-world problems have a structure where individual local optima, or “basins” tend to cluster to-
gether into “funnels” where one local optimum is better than the rest. A problem may have several
such funnels. MBH was originally developed to solve molecular conformation problems in com-
putational chemistry, but has been demonstrated to be effective on various types of interplanetary
trajectory problems [16, 17, 40, 35, 18, 36, 41]. MBH is a two-stage solver that alternates back
and forth between a stochastic global search stage and a deterministic NLP stage.

First, an initial point x is randomly chosen. The NLP solver is run using x as the initial guess.
If the NLP solver finds a feasible solution, then that new point x∗ is adopted as the new current
point. If the NLP solver does not find a feasible solution, then a new random point is chosen. Once
a feasible solution is found, MBH will attempt to “hop” from the feasible and locally optimal x∗ to
a better point. The hop is a two-step process: first a small random perturbation vector is added to
x∗, producing a new x′, and then the NLP solver is run. If the resulting solution is both feasible and
superior to x∗, then it is adopted as the new x∗ and the hopping process begins again. Otherwise,
MBH attempts a new hop from the current x∗. Each feasible solution is stored in an archive.

MBH is run until either a specified number of iterations (trial points attempted) or a maximum
CPU time is reached, at which point the best solution stored in the archive is returned as the
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solution to the outer-loop. The version of MBH used in this work has two parameters - the stopping
criterion and the type of random step used to generate the perturbed points x′. Further, in this
work the random step is drawn from a bi-directional Pareto distribution. The bi-directional Pareto
distribution will usually generate small steps that allow MBH to exploit the local funnel around the
current best solution. However some of the steps generated by the bi-directional Pareto distribution
will be much larger, in some cases spanning the entire solution space. These larger steps allow
MBH to explore the full problem. This approach is known to be robust on many complex low-
thrust problems [19].

The algorithm is improved from that found in Englander and Englander[19] by the addition of a
“time hop” operator [42] by which, in some small fraction of iterations with probability ρtime−hop,
the variable representing the time of flight between two bodies is incremented or decremented by
the synodic period of those two bodies. Cassioli et al.[42] have found that the time hop operator
can increase the efficiency of MBH in some circumstances. In addition, the variant of MBH
used in this work employs a “feasible point finder” consisting of a penalty that is applied to any
solutions for which the NLP stage does not converge. The penalty function is equal to the 2-norm
of the constraint violation after the NLP solver halts, allowing MBH to distinguish between two
infeasible solutions instead of having to be run repeatedly with a random starting location until a
feasible solution is found as in classical MBH. The pseudocode for MBH is listed in the appendix.

If the inner-loop solver finds a feasible solution, the objective function value is returned to the
outer-loop solver so that it may be used to rank candidate missions. If the inner-loop does not find
a feasible solution, a metric of infeasibility is returned to the outer-loop so that it may compare
feasible solutions against infeasible and even different infeasible solutions against each other. The
infeasibility metric used here is given in Eq. (17), where ∆Fmax is the largest-magnitude constraint
violation and ‖x‖ is the 2-norm of the decision vector. This metric is the same as the constraint
check used in SNOPT,

ρ =
∆Fmax
‖x‖

(17)

The outer-loop then assigns the infeasible mission an objective function value of,

J = 1.0× 10100 + ρ (18)

The constant term in Eq. 18 is very large to encourage the outer-loop to discard the infeasible
solution in the next generation and the ρ term allows the outer-loop to compare two infeasible
solutions in the selection operator and discard whichever is worse.

The MBH+NLP optimization algorithm in this work is efficient and does not require an initial
guess. MBH is most useful when one does not have much a priori information about the solution
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as is always the case when solving an inner-loop trajectory optimization problem inside an hybrid
optimal control (HOC) mission design problem.

V. Examples
A. Low-Thrust Mission to Mercury

The first example case is a low-thrust mission to Mercury, based on a version of ESA’s Bepi-
Colombo mission[43, 44, 17]. BepiColombo will use low-thrust electric propulsion and flybys of
Venus and Mercury to reach its final orbit about Mercury. The specific version of BepiColombo
studied here is the original concept study that assumed launch in 2009. This specific problem was
chosen to enable comparison with the results of Yam et al. [17], who used monotonic basin hop-
ping with nonlinear programming to optimize an Earth-Venus-Venus-Mercury-Mercury-Mercury
(EVVYYY) trajectory with a 2009 launch. Because this mission travels to the inner solar sys-
tem and will always have enough power for its propulsion system, and also for better comparison
with Yam et al., the thrust, specific impulse, and initial mass of the spacecraft are fixed. Table 2
describes the problem assumptions.
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Table 2. Assumptions for the BepiColombo Mission

Option Value

Maximum launch v∞ 1.925
Arrival type intercept (match position) with bounded v∞
Maximum arrival v∞ 0.5 km/s
Launch window open date 8/1/2009
Launch window close date 4/27/2012
Flight time upper bound 15 years
Propulsion type fixed Isp and thrust
Thrust 0.34 N
Isp 3200 s
Initial mass 1300 kg
Number of time steps per phase 10
Maximum number of flybys 8
Outer-loop GA Population Size 60
Outer-loop GA number of generations 200
Outer-loop GA CRGA 0.3
Outer-loop GA µGA 0.15
Inner-loop MBH run time 20 minutes
Inner-loop MBH Pareto α 1.5
Inner-loop MBH maximum iterations 100,000 (never reached)

The BepiColombo problem was run 10 times on a 60-core Intel Xeon E7-4890 running at 2.8
GHz with 500 GB of RAM. Each run took 67 hours. The 10 trials were conducted because both the
outer-loop and the inner-loop are driven by stochastic processes and therefore the HOCP algorithm
may not deliver the same results in every trial. Table 3 shows that the best sequence found was
EEVVYY with a delivered mass of 1100 kg, compared to the EVVYYY solution delivering 1064
kg found by Yam et al.. This sequence was found in 3 of the 10 runs. Note from Table 3 that there
are several solutions to the BepiColombo problem with very similar objective function values and
in fact there are several very similar solutions to each inner-loop problem. In every case where the
optimal EEVVYY sequence was not found to have the best objective function value, that sequence
was considered by the HOCP automaton but the inner-loop failed to find the global best solution
and therefore that sequence did not trade well against others. This result suggests that the most
productive direction of future research on the HOCP automaton is to improve the performance of
the inner-loop solver. It is also worth noting that sometimes the outer-loop found the best sequence
very early - as early as generation 20, but in other cases the best solution was not identified until
much later. A larger population size could mitigate this problem but this result does confirm that it
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is valuable to run the outer-loop for at least the 200 generations used in this example.

Table 3. Performance of the HOCP automaton on the BepiColombo problem

Run Best Sequence Delivered mass (kg) Generation of best sequence

1 EEVVYY 1100 175
2 EEVVYY 1091 129
4 EEVVYY 1078 84
3 EVVYY 1085 20
5 EEVVY 1069 151
6 EVVYY 1057 146
7 EVVYY 1050 194
8 EEVVY 1049 142
9 EEVVY 1043 145
10 EVVVY 1029 32
Yam et al. EVVYYY 1064 N/A

Table 4 shows the best 20 (of 167) feasible solutions found by Run 3 of the HOCP automaton.
Note that there are many solutions with very similar objective function values. Table 5 lists the
itinerary of the optimal EEVVYY mission. Figure 3 is a plot of that mission.

Table 4. Top 20 solutions found by Run 3 of the HOCP automaton on the BepiColombo problem

Sequence Delivered mass (kg) Generation found
EEVVYY 1100 175
EVVYY 1048 148
EEVVY 1044 89
EEVYY 1039 118
EEVY 1023 5
EVVVYY 1022 175
EVVY 1015 186
EEEVVY 1014 118
EEEVY 1005 103
EVVVY 1001 143
EEVVVY 999 159
EVYY 986 49
EEEVVYY 975 166
EVEVVY 970 80
EEEVYY 966 176
EEVYYY 958 201
EVY 958 136
EVEVVYY 953 154
EVVYYY 950 0
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Table 5. Itinerary for the optimal BepiColombo mission

Date Event Location C3 (km2/s2) Flyby altitude (km) Mass (kg)
7/19/2011 launch Earth 3.7 1300.0
9/1/2016 flyby Earth 13.5 4090 1280.3
12/3/2017 flyby Venus 49.7 5194 1280.3
12/27/2020 flyby Venus 62.0 300 1269.7
11/17/2024 flyby Mercury 5.0 300 1126.8
3/8/2025 intercept Mercury 0.3 1100
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Figure 3. Optimal trajectory for the BepiColombo rendezvous mission

B. Main Belt Asteroid Rendezvous

The second example is of the type with an unspecified destination, a mission to visit two asteroids
in the main belt. Any asteroid with a diameter of at least 200 km according to the JPL Small Bodies
Database [45] is considered an acceptable target. The 23 bodies that meet this criterion are listed in
Table 6. The outer-loop is allowed to choose any two of these bodies. Any candidate mission that
visits the same body twice is assigned a poor fitness value so that the outer-loop evolves away from
such missions. The outer-loop is also allowed to choose up two two flybys of Venus, Earth, or Mars
before the first asteroid rendezvous and up to one flyby of Mars between asteroids. No pre-filtering
is done on the space of possible missions - the purpose of this experiment is to see if the outer-
loop can design the optimal mission with no a priori choices made. There are 38,088 solutions to
the main belt asteroid rendezvous problem, including duplicate solutions that the outer-loop will
discard. The number of possible solutions scales to the power of the number of rendezvous in the
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mission, so if a third rendezvous were to be considered then filtering strategies would have to be
introduced to keep the problem tractable.

Table 6. Main-belt asteroids with diameter greater than 200 km, reference epoch June 27th, 2015

Asteroid a (AU) e i (◦) Ω (◦) ω (◦) M (◦)
1 Ceres 2.77 0.08 10.6 80.3 72.7 138.7
2 Pallas 2.77 0.23 34.8 173.1 310.0 120.9
4 Vesta 2.36 0.09 7.1 103.8 151.2 75.2
10 Hygiea 3.14 0.11 3.8 283.4 312.1 264.5
511 Davida 3.16 0.19 15.9 107.6 337.8 88.4
704 Interamnia 3.06 0.15 17.3 280.3 95.3 202.2
52 Europa 3.09 0.11 7.5 128.7 344.4 343.0
31 Euphrosyne 3.16 0.22 26.3 31.1 61.5 201.1
15 Eunomia 2.64 0.19 11.7 293.2 97.5 323.4
16 Psyche 2.92 0.14 3.1 150.3 227.1 14.1
3 Juno 2.67 0.26 13.0 169.9 248.4 78.2
88 Thisbe 2.77 0.16 5.2 276.7 35.9 109.9
324 Bamberga 2.69 0.34 11.1 327.9 44.2 135.8
451 Patientia 3.06 0.08 15.2 89.3 337.2 205.6
532 Herculina 2.77 0.18 16.3 107.6 76.0 45.8
48 Doris 3.11 0.07 6.5 183.6 253.6 177.4
375 Ursula 3.13 0.11 15.9 336.6 342.5 45.9
45 Eugenia 2.72 0.08 6.6 147.7 88.7 90.3
29 Amphitrite 2.55 0.07 6.1 356.4 62.0 307.8
423 Diotima 3.07 0.04 11.2 69.5 200.8 163.4
13 Egeria 2.58 0.08 16.5 43.2 80.2 214.3
94 Aurora 3.16 0.09 8.0 2.6 61.0 62.5
19 Fortuna 2.44 0.16 1.6 211.2 182.2 195.5

The spacecraft in this second example is more complex than that in the BepiColombo example.
Instead of supplying a fixed thrust, Isp, and initial mass, this spacecraft is given two BPT-4000
Hall-effect thrusters [46] and a 15 kW solar array whose performance varies as per Eq. (13) with
800 W always reserved for the spacecraft bus. The spacecraft is constrained to use no more than
950 kg of propellant for interplanetary cruise plus an additional 25 kg for proximity operations
at each body. The standard preliminary design margins are applied as per Oh et al. [47] - 15%
power margin, 10% propellant margin, and a 90% thruster duty cycle. The “minimum number of
thrusters” throttle logic is used. The spacecraft launches on a Falcon 9 v1.1 modeled as per Eq.
(7). The inner-loop solver is permitted to underload the launch vehicle if it is optimal to do so, i.e.

if a lower initial mass yields a higher final mass. A 60-day coast period is enforced after launch to
allow for spacecraft checkout.

Table 7 lists the problem assumptions for the main belt tour mission. The main-belt tour prob-
lem was run 10 times on a 60-core Intel Xeon E7-4890 running at 2.8 GHz with 500 GB of RAM.

21 of 36

American Institute of Aeronautics and Astronautics



Table 7. Assumptions for the Main Belt Tour Mission

Option Value
Launch window open date 1/1/2020
Launch window close date 9/27/2022
Flight time upper bound 10 years
Arrival condition rendezvous (match position and velocity)
Launch vehicle Falcon 9 v1.1
Launch asymptote declination bounds [−28.5, 28.5] (Kennedy Space Center)
Post-launch coast duration 60 days
Solar array P0 15 kW
Solar array coefficients γi [1, 0, 0, 0, 0]
Spacecraft power coefficients as/c − cs/c [0.8, 0, 0]
Propulsion system 2 BPT-4000 in “high-Isp” mode [46]
Throttle Logic minimum number of thrusters
Propellant tank capacity 1000 kg (25 kg reserved for

operations at each asteroid)
Duty cycle 90%
Power margin 15%
Propellant margin 10%
Number of time steps per phase 20
Target selection outer-loop chooses any two from Table 6
Flyby sequence
before first rendezvous up to two flybys of Venus, Earth or Mars
between rendezvous up to one flyby of Mars
Outer-loop GA Population Size 60
Outer-loop GA number of generations 200
Outer-loop GA CRGA 0.3
Outer-loop GA µGA 0.15
Inner-loop MBH run time 5 minutes
Inner-loop MBH Pareto α 1.4
Inner-loop MBH maximum iterations 100,000 (never reached)

Each run took about 20 hours. Table 8 shows the best mission found by each run. Note that the
best solution, E-M-4 Vesta-1 Ceres delivering 1506 kg after propellant margin was removed, was
found only once. This result shows two flaws in the way that the problem was posed to the HOCP
automaton. First, the outer-loop population size was too small and therefore there was insuffi-
cient diversity in the initial population. Second, the inner-loop solver was not run for a sufficient
amount of time for MBH to locate the vicinity of the globally optimal trajectory for every candi-
date sequence. While it is not possible to guarantee that this will happen, the probability of MBH
succeeding in finding the global optimum does scale with run time [19]. Note in Table 8 that the
outer-loop considered less than 2000 possible sequences, only about 5% of the search space, in
each trial. This sampling was not enough to find the global optimum every time.
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Table 8. Performance of the HOCP automaton on the main belt tour problem

Run Best Sequence Generation of Delivered mass (kg) # sequences
best sequence evaluated

1 E-4 Vesta-1 Ceres 20 1014 1613
2 E-4 Vesta-1 Ceres 29 1045 1552
3 E-M-4 Vesta-1 Ceres 21 1506 1628
4 E-4 Vesta-1 Ceres 77 1045 1584
5 E-M-19 Fortuna-48 Doris 77 1163 1549
6 E-4 Vesta-1 Ceres 19 1045 1454
7 E-4 Vesta-1 Ceres 81 1045 1566
8 E-M-4 Vesta-52 Europa 17 1213 1580
9 E-4 Vesta-1 Ceres 29 1045 1450
10 E-M-M-4 Vesta-423 Diotima 176 1061 1661

In an operational mission design environment, the HOCP automaton would be run with a larger
population and with a longer inner-loop run time. The outer-loop would ideally explore a larger
fraction of the total design space than the 5̃% shown in this example. However a larger population
would make the total run time for the solver longer, up to several days or for particularly difficult
problems as long as two weeks on the computers available to these authors. For this paper, it
was desired to run each example 10 times, and so example problems were constructed that were
simple enough that they could be run quickly. Clearly the main-belt tour example problem is too
challenging to be solved in such a short time via the methods presented in this work.

Table 9 shows the best 20 missions found by the HOCP automaton in Run 8, the run that found
the global best solution. The best mission, E-M-4 Vesta-1 Ceres delivering 1506 kg, was found in
generation 21 of 200 outer-loop generations. Table 10 shows the itinerary of the optimal mission,
and Fig. 4 shows the trajectory. Figure 5 is a plot of the propulsion and power characteristics
of the spacecraft as a function of time throughout the mission. It is interesting to note that while
the spacecraft has two thrusters available, the number of active thrusters, represented by the “+”
markers in Fig. 5, never rises above one thruster. This result is because in the optimal trajectory
thrusting never occurs closer to the sun than 1.5 AU, at which point there is not sufficient power
to require switching on a second thruster. Also note that the solution is highly dependent on the
systems parameters, in this case power and propulsion. It would be of great value if the outer-loop
could vary systems parameters as well as flybys and asteroids. This extension to the outer-loop is
currently in development [48] and will be further explored in a future work.
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Table 9. Convergence history for one run of the main-belt rendezvous problem

Sequence Generation found Dry mass (kg)

E-M-4 Vesta-1 Ceres 21 1506
E-19 Fortuna-88 Thisbe 16 1017
E-4 Vesta-1 Ceres 15 1014
E-4 Vesta-16 Psyche 25 936
E-19 Fortuna-48 Doris 22 902
E-4 Vesta-45 Eugenia 7 893
E-19 Fortuna-15 Eunomia 3 883
E-4 Vesta-423 Diotima 33 849
E-E-19 Fortuna-15 Eunomia 8 819
E-29 Amphitrite-324 Bamberga 9 765
E-1 Ceres-4 Vesta 9 744
E-19 Fortuna-324 Bamberga 6 736
E-88 Thisbe-15 Eunomia 8 734
E-19 Fortuna-16 Psyche 21 710
E-19 Fortuna-45 Eugenia 13 678
E-15 Eunomia-88 Thisbe 22 674
E-4 Vesta-94 Aurora 3 653
E-M-4 Vesta-94 Aurora 27 649
E-E-4 Vesta-423 Diotima 85 635
E-M-16 Psyche-45 Eugenia 52 612

Table 10. Itinerary for the optimal main-belt rendezvous mission

Date Event Location C3 (km2/s2) Flyby altitude (km) Mass (kg)
6/16/2022 launch Earth 11.5 2481.4
2/5/2025 unpowered flyby Mars 18.6 300 2358.7
8/9/2027 LT rendezvous 4 Vesta 1946.8
8/8/2028 departure 4 Vesta 1921.8
12/26/2031 LT rendezvous 1 Ceres 1592.8
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Figure 4. Optimal trajectory for the main-belt rendezvous mission

Figure 5. Time-history of power and propulsion for the main-belt rendezvous mission
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C. Low-Thrust Mission to Pluto

The last example is a mission to Pluto, inspired by the recent success of New Horizons [49]. Unlike
New Horizons, which was a fast flyby, the notional mission presented here would rendezvous
with the Pluto system, enabling in-depth science. The spacecraft for this mission is given a 1 kW
radioisotope power source that decays at a rate of 2% per year and a VSI propulsion system capable
of operating at any Isp between 1000 s and 3000 s with an efficiency of 60%. The spacecraft bus
requires 200 W at all times, and the remaining power is available for the propulsion system. Like
New Horizons, the spacecraft launches on an Atlas V 551 with a Star 48 upper stage. Once again
the standard preliminary design margins are applied as per Oh et al. [47] - 15% power margin,
10% propellant margin, and a 90% thruster duty cycle. No propellant tank constraint was applied.
The objective is to maximize delivered mass for a flight time of up to 25 years. The outer-loop is
allowed to choose up to four flybys of Venus, Earth, Mars, Jupiter, Saturn, or Uranus. Table 11
lists the assumptions for the Pluto rendezvous mission.

The Pluto rendezvous problem was run 10 times on a 60-core Intel Xeon E7-4890 running at
2.8 GHz with 500 GB of RAM. Each run took 67 hours, although the optimal solution was often
identified in less than half of that time. The algorithm continued to run because it had no way to
know that it had found the global optimum. In every case the HOCP automaton converged to an
Earth-Jupiter-Pluto flyby sequence with a delivered mass of 983 kg. The mean number of gener-
ations to find the optimal solution was 99 and the median was 111. The greater reliability of the
HOCP automaton on the Pluto rendezvous problem relative to the previous examples is partly be-
cause the optimal sequence is quite short and therefore generates a smaller inner-loop problem and
partly because MBH was run for a longer period of time. Table 12 shows all 19 solutions for one
of the runs that were “feasible” in the sense that the inner-loop returned a solution. However a neg-
ative mass value is listed for several of the missions, meaning that while the continuity constraints
were satisfied for the trajectory itself, it was not possible to fit the 10% propellant margin into the
spacecraft. In these cases mathematical feasibility is not the same thing as physical feasibility.

Table 13 lists the itinerary of the optimal Pluto rendezvous mission. Figure 6 shows the trajec-
tory followed by the optimal mission, and Fig. 7 shows the time history of power and propulsion
parameters over the course of the mission. Note that in Fig. 7 the optimizer chooses the Isp, de-
noted by the dash-dotted line, to be close to the lower bound of 1000 seconds at the beginning and
end of the mission, but prefers a higher Isp and therefore a lower thrust for the middle portion. An
optimal coast arc is found, beginning one year after the Jupiter flyby and lasting for three years.
Note also that in Table 13 and Fig. 6, the mass at arrival is 1064 kg. However when the 10%
propellant margin is applied only 983 kg is available for dry mass, consistent with Table 12.
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Table 11. Assumptions for the Pluto Rendezvous Mission

Option Value

Launch window open date 1/1/2025
Launch window close date 1/1/2035
Flight time upper bound 25 years
Arrival condition rendezvous (match position and velocity)
Launch vehicle Atlas V 551 with Star 48 upper stage
Launch asymptote declination bounds [−28.5, 28.5] (Kennedy Space Center)
Power supply 1 kW radioisotope with 2% decay per year
Propulsion system VSI with 60% efficiency and Isp in [1000, 3000] s
Duty cycle 90%
Power margin 15%
Number of time steps per phase 20
Flyby sequence up to four flybys of Venus, Earth, Mars,

Jupiter, Saturn, or Uranus
Outer-loop GA Population Size 59
Outer-loop GA number of generations 200
Outer-loop GA CRGA 0.3
Outer-loop GA µGA 0.15
Inner-loop MBH run time 20 minutes
Inner-loop MBH Pareto α 1.2
Inner-loop MBH maximum iterations 100,000 (never reached)
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Table 12. Convergence history for one run of the Pluto rendezvous problem

Sequence Generation found Delivered mass (kg)

EJP 82 984
EP 92 601
EMP 199 329
EJJP 146 322
ESP 187 169
EJSP 166 158
EEP 3 31
EVP 4 -20
EJUP 134 -75
EVEP 57 -76
EJSJP 28 -80
ESSP 2 -91
EJJUP 67 -103
EJSSP 13 -124
EUP 43 -144
EEMP 3 -203
EEEP 8 -244
EJMP 98 -282
EEJP 110 -588

Table 13. Itinerary for the optimal Pluto rendezvous mission

Date Event Location C3 (km2/s2) Flyby altitude Mass (kg)

12/15/2028 launch Earth 76.9 1870
10/6/2030 flyby Jupiter 88.7 23.9 Rj 1703
12/13/2053 rendezvous Pluto 1064

VI. Conclusion
A. Summary

In this work we show that the low-thrust interplanetary mission design problem may be posed as a
hybrid optimal control problem (HOCP) and effectively explored via the powerful combination of
a discrete genetic algorithm (GA) outer-loop with a monotonic basin hopping (MBH)+nonlinear
programming (NLP) inner-loop. The trade space for a given mission may be characterized even
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Figure 6. Optimal trajectory for the Pluto rendezvous mission

Figure 7. Time-history of power and propulsion for the Pluto rendezvous mission
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when there is only enough time to evaluate a fraction of the full combinatorial design problem.
The algorithm described in this work is a fully automated technique that can design interplan-

etary trajectories with low-thrust propulsion and complex flyby sequences while not requiring any
a priori information about the optimal sequence or trajectory. This process is far less expensive,
in terms of human hours required, than traditional design processes in which a human analyst con-
structs the trajectory by hand. This can allow a single analyst to simultaneously work on several
very different problems. In addition, the solutions found by the HOCP automaton are sometimes
non-intuitive and might not be considered in an intuition-driven design process. For example, some
low-thrust trajectory problems can be readily solved with an initial guess from a ballistic design
and some cannot. The ability to find non-intuitive solutions is is a significant advantage in mission
design, as the success or failure of a planetary mission proposal sometimes hinges on the flight
dynamics team finding a non-intuitive trajectory design that enables a larger payload, a shorter
flight time, or in some cases both.

However the quest for a robust, fully automated technique is ongoing. As demonstrated in the
second example in this work, the HOCP automaton described here is not yet sufficiently reliable
on some types of problems such as multi-rendezvous missions in which the outer-loop must select
the targets. This will be the subject of future work.
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Appendix: Optimization Algorithms

generate P , a set of Np random vectors xGA in the decision space
evaluate all xi ∈ P
while not hit stop criterion do

for i = 1 to CRGANp do
randomly choose Nparents individuals from the population, forming a parent pool
choose the best member of the parent pool as xmom

randomly choose Nparents individuals from the population, forming a new parent pool
choose the best member of the parent pool as xdad

choose random integers r1 and r2 in [0, len (x)]

form xchild by taking the first r1 entries and last (len (x)− r2) entries from xmom and the
middle entries from xdad

insert xchild into the new population
end for
for i = 1 to (1− CRGA)Np −Nelite do

randomly choose Nparents individuals from the population, forming a pool
choose the best member of the pool as xretained

form xmutated by copying xretained and then with probability µGA replacing each entry with
a random value
insert xmutated into the new population

end for
for i = 1 to Nelite do

insert the i-th best unique individual xelite−i, unmodified, into the new population
end for
evaluate all xi ∈ P

end while
return xbest

Figure 8. Genetic Algorithm (GA)
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generate random point x
run NLP solver to find point x∗ using initial guess x
xc = x∗

if x∗ is a feasible point then
save x∗ to archive

end if
while not hit stop criterion do

generate x′ by randomly perturbing xc

for each time of flight variable ti in x′ do
if rand (0, 1) < ρtime−hop then

shift ti forward or backward one synodic period
end if

end for
run NLP solver to find point x∗ from x′

if x∗ is feasible and f (x∗) < f (xc) then
xc = x∗

save x∗ to archive
else if x∗ is infeasible and xc is infeasible and ‖c (x∗)‖ < ‖c (xc)‖)

xc = x∗

end if
end while
return best x∗ in archive

Figure 9. Monotonic Basin Hopping (MBH)
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Figure 10. Monotonic Basin Hopping (MBH) flow chart
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